
Understanding Gaussian Processes:
From Theory to Applications

Giovanni Franzese
TU Delft

April 2024

2

Preface

The first time I fitted a Gaussian Process (GP) was at the beginning of my
PhD, during the COVID-19 pandemic. At the time I was using MATLAB, and
I did not have a very thorough understanding of the mathematics that was reg-
ulating the fitting or the prediction process. Nevertheless, seeing my GP fitting
perfectly my data was a revelation and since then, my love for them has not
vanished. I collected my ideas and trained different models in the last years
that made my understanding of the fundamentals better and I hope, with these
lecture notes, to gently introduce you to the fantastic field of probabilistic model
learning. There are many other good sources where to learn on Gaussian Pro-
cess and these lecture notes are not a substitute for them, but hopefully will
give you some tools and intuitions to read and understand better the literature.

Giovanni

3

4

Chapter 1

Introduction

Imagine to model the acceleration of a car given how hard you press the accel-
erator and the current velocity of the car. This may help in then building a
controller that, by levering the model prediction, is able to perform hazardous
maneuver successfully or to cruise at a very fuel-efficient pace. Having a good
model of the reality, from physics to engineering, makes many engineers busy
(and happy).

However, finding good models of anything, from car dynamics to quantum
physics is complicated and requires validation and many iterations. For ex-
ample, we could model something completely from first principle. Modeling
something from first principles involves creating a theoretical framework based
on fundamental laws, principles, and assumptions, without relying on empirical
data. The experimental data are only used to validate the model.

On the other hand, we could also model something completely from a data-
driven point of view where the underlying phenomena is too complicated to
model from a first principle point of view. In this case we can just rely on
generic function approximators, such as Neural Networks or Gaussian Process,
and regress the model given a set of data.

Unfortunately, when fitting data-driven models, we are facing many chal-
lenges. For example, when modeling the output acceleration we many record
data with an accelerometer that ouputs very noisy measure, makeing the infer-
ence of the true car acceleration complicated. Moreover, since during execution
the car velocity and the throttle will never perfectly match any of the recorded
data, how should the regressor interpolate the prediction correctly. Last but not
least, what should be the confidence of the model in making prediction when
there are not data evidence or when the prediction is too noisy?

Let’s understand this!

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Linear Regression

2.1 Ordinary Linear Regression

(Ordinary) Linear Regression is a statistical model which estimates the linear
relationship between a scalar response and one or more explanatory variables
(also known as dependent and independent variables).

y = f(x) = xw (2.1)

where x ∈ RN×l , y ∈ RN×o and w ∈ Rl×o where l is the number of in-
put features and o is the number of output features and N is the number of
observations.

The least share solution of the parameters is

w = (X⊤X)−1X⊤y. (2.2)

The matrix to invert has dimension l × l and a cost O(l3).

2.2 Kernelized Linear Regression

Kernelized linear regression is a technique that applies the kernel trick to lin-
ear regression. It transforms the input features into a higher-dimensional space
ϕ, allowing for non-linear relationships to be captured. The regression is then
performed in this transformed space, effectively modeling non-linear patterns
in the data while still using a linear model. This approach can be computa-
tionally expensive for large datasets due to the need to compute pairwise kernel
evaluations. Mathematically,

y = f(ϕ(x)) = ϕ(x)w (2.3)

where ϕ(x) ∈ RN×L , y ∈ RN×o and w ∈ RL×o where L is the number of new
projected input features and o is the number of output features and N is the

7

8 CHAPTER 2. LINEAR REGRESSION

Figure 2.1: Example of Linear Regression on noisy data

number of observations. If the number of extracted features is very big, the
calculation of the matrix w, i.e.,

w = (ϕ(X)⊤ϕ(X))−1ϕ(X)⊤y. (2.4)

will be intractable given the inversion of the matrix. However, given that we
only have N data points, the solution parameters solution must be correlated
between them and the maximum N parameters can be independent (per output).
This is why we can write w as a linear combination of the data points, such as:

w = ϕ(X)⊤α (2.5)

where α ∈ RNxo. Given the definition of w and the least square solution, we
can write that

(ϕ(X)⊤ϕ(X))−1ϕ(X)⊤y = ϕ(X)⊤α (2.6)

(ϕ(X)⊤ϕ(X))ϕ(X)⊤α = ϕ(X)⊤y (2.7)

ϕ(X)ϕ(X)⊤ϕ(X)ϕ(X)⊤α = ϕ(X)ϕ(X)⊤y (2.8)

If we define K = ϕ(X)ϕ(X)⊤ then

α = K−1y (2.9)

hence to make prediction on a new point

f(x∗) = ϕ(x∗)ϕ(X)⊤K−1y (2.10)

2.3. BAYESIAN LINEAR REGRESSION 9

f(x∗) = k(x∗,X)K−1y (2.11)

By writing the dot product between a possibility (infinitely) big ϕ(x) and ϕ(x′),
as a nonlinear function k(x,x′) has a significant computational advantage. This
is called the kernel trick. We can summarize and say that the kernel trick al-
lows algorithms to implicitly operate in a higher-dimensional space by comput-
ing the dot product between data points in this space without actually having
to compute the transformation of the data points into that higher-dimensional
space. Finding the kernel function that corresponds to a particular ϕ vector
is not simple and vice versa. However, since the dot product is an operator of
similarity between vectors, we can say that the kernel between two inputs is
telling us how similar the projected vectors would be in these other spaces. The
idea on how two vectors are similar in this infinite dimensional space is going
to be of use later when we are going to use the kernel to build our covariance
matrix in a Gaussian Process. Figure 2.2, shows how we can fit non linear data
by using a linear regression technique, thanks to the use of a non linear kernel.

Figure 2.2: Fitting a non-linear function using kernelized linear regression where
the kernel is a square exponential kernel.

2.3 Bayesian Linear Regression

Bayesian linear regression is a statistical approach to linear regression that in-
corporates Bayesian principles. Instead of providing a single point estimate for
the regression coefficients, it provides a probability distribution over possible
values of the coefficients. This distribution is updated based on prior beliefs

10 CHAPTER 2. LINEAR REGRESSION

about the coefficients and observed data, allowing for uncertainty to be quanti-
fied. Mathamatically,

f(x) = xw (2.12)

or
p(f |x,w) = N (xw, 0) (2.13)

We assume that the observation of the data is the true function plus as
Gaussian noise, i.e.,

y = f(x) + ϵ (2.14)

ϵ ∼ N (0, σ2
n) (2.15)

This also means that the likelihood of observing the data is also gaussian dis-
tributed with linear mean and a diagonal covariance matrix, i.e.,

p(y|X,w) = N (Xw, σ2
nI) (2.16)

In order to find the probability distribution of the parameters, starting from a
prior distribution, i.e.,

w ∼ N (0,Σp) (2.17)

where Σp is the prior covariance matrix, we can use Bayes theorem

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)
. (2.18)

To predictions, we can marginalize

p(f∗|X) =

∫
p(f∗|w,X)p(w|y,X)dw (2.19)

Figure 2.3, shows the prediction of the linear regression with the predicted
uncertainty bounds.

2.3. BAYESIAN LINEAR REGRESSION 11

Figure 2.3: Fitting of noisy data using Bayesian Linear Regression

12 CHAPTER 2. LINEAR REGRESSION

Chapter 3

Properties of Gaussian
Distributions

3.1 Definition Gaussian

The probability density function (PDF) of a univariate Gaussian distribution
with mean µ and variance σ2 is given by:

N (x|µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
The probability density function (PDF) of a multivariate Gaussian distribu-

tion with mean vector µ and covariance matrix Σ is given by:

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
where x is the vector of random variables, µ is the mean vector, Σ is the

covariance matrix, and d is the dimensionality of x.

3.2 Gaussian Conditioning

Given a joint probability p(f ,y) to be Gaussian, i.e.,[
f
y

]
∼ N

([
µf

µy

]
,

[
Σff Σfy

Σyf Σyy

])
. (3.1)

then also we can compute the distribution of any of the vector variables f and y
by conditioning the joint distribution and we could prove that the conditioned
distribution is still normally distributed, i.e.,

f |y ∼ N (µf |y,Σf |y)

13

14 CHAPTER 3. PROPERTIES OF GAUSSIAN DISTRIBUTIONS

where,

µf |y = µf +ΣfyΣ
−1
yy(y − µy)

Σf |y = Σff −ΣfyΣ
−1
yyΣyf .

For the proof, look at [1].
The conditioning of a Gaussian has a central role in the computation of the

predictive distribution when learning a Gaussian Process.

3.3 Gaussian Marginalization

p(y) =

∫
p(y|f)p(f) (3.2)

If p(y|f) is N (Af ,Σy) and p(f) is N (µf ,Σf) then

p(y) = N (Aµf ,AΣfA
⊤ +Σy) (3.3)

For the proof, look at [1]. This single equation explains many of the equation
of GPs. For example, if p(y|f) is N (f , Iσ2

n) and N (0,Σf) we obtain that

p(y) = N (0,Σf + Iσ2
n) (3.4)

that is the solution we used when computing the marginal likelihood to optimize
the hyperparameters of the kernel.

Similarly, when we computed

q(f) :=

∫
p(f |u)q(u)du, (3.5)

we can compute p(f |u) using the conditioning, i.e. f |u,

p(f |u) = NK(X,Z)K(Z,Z)−1f,K(X,X)−K(X,Z)K(Z,Z)−1K(Z,X))

so in this circumstance A := K(X,Z)K(Z,Z)−1 and
Σf := K(X,X)−K(X,Z)K(Z,Z)−1K(Z,X). If q(u) = N (m,S) and using

the definition of marginalization of Gaussians 3.3 we obtain the definition for
the prediction of an SVGP, Eq. 8.22. You can try it yourself.

3.4 Bayes Theorem with Gaussians
Bayes theorem tells us that

p(f |y) ∝ p(y|f)p(f) (3.6)

however, if the likelihood probability and the prior probability are normally
distributed, then also the posterior are. So, if p(y|f) is N (Af ,Σy) and p(f) is
N (µf ,Σf) then

f |y ∼ N (R(y −Aµf) + µf ,Σf −RAΣ⊤
f) (3.7)

3.5. FURTHER READING 15

where R = ΣfA
⊤(AΣfA

⊤ +Σy)
−1. For the proof, look at [1].

When we used Bayes theorem was to find the posterior f given the data y
and knowing that p(y|f) = N (f , Iσ2

n) and p(f) = N (0,K(X,X)). Then by
setting µf = 0, A = I, Σy = Iσ2

n and Σf = K(X,X) we obtain

f |y ∼ N (Ry,K(X,X)−RK(X,X)⊤) (3.8)

where R = K(X,X)(K(X,X) + Iσ2
n)

−1. That is exactly the equation found
for the posterior distribution.

3.5 Further Reading
1. Bayes’ Theorem for Gaussians [1]

16 CHAPTER 3. PROPERTIES OF GAUSSIAN DISTRIBUTIONS

Chapter 4

Exact Gaussian Process

When learning a model we are estimating the parameters from a (finite) amount
of data but are often required to act on a continuous space, e.g., when predict-
ing the robot acceleration in previously unknown states. Therefore, fitting a
continuous function to approximate the data is necessary. Since we do not have
an infinite amount of data, assumptions on the function need to be made, e.g.
linear, non-linear, parametric, non-parametric, etc.

The use of function approximators is not only specific to supervised learning
but to any learning field that requires the mapping between inputs and outputs.
The difference in how the function is shaped separates different learning fields.
Many different regressors could be interpreted as a particular case of a unified
model [5], showing the usability of different function approximations.

Since the focus of this lecture is to quantify and exploit uncertainties to
increase efficiency and efficacy in robot learning, this chapter will introduce the
basic concepts of Bayesian Learning with a particular focus on Gaussian Process
Regression. The goal will be to quantify two types of uncertainties, aleatoric
and epistemic.

Aleatoric uncertainty is also known as stochastic uncertainty and is rep-
resentative of unknowns that differ each time we run the same experiment.
Aleatoric is derived from the Latin alea or dice, referring to a game of chance.

Epistemic uncertainty is also known as systematic uncertainty, and is
due to things one could in principle know but does not in practice. This may
be because a measurement of particular data has been deliberately hidden, i.e.
there is not enough data to support a confident prediction.

17

18 CHAPTER 4. EXACT GAUSSIAN PROCESS

4.1 Gaussian Process Regression
A Gaussian Process (GP) is a generalization of a Gaussian distribution over
functions. In other words, a Gaussian process defines a distribution over func-
tions, where any finite number of points from the function’s domain follows a
multivariate Gaussian distribution. If we want to find this distribution in a
fully Bayesian way, then we must define a prior distribution over all the possible
functions.

4.1.1 Prior
The prior is typically specified as a mean function and a covariance function.
The prior distribution represents our beliefs about the functions before observing
any data. Our prior belief is that our function is a sample of a Gaussian Process
defined by a mean function and a kernel matrix, i.e.,

f(x) ∼ GP(m(x), k(x,x′)) (4.1)

where k(x,x′) is the kernel function and m(x) is the mean function. Eq. 4.1,
is the generalization of a discrete case,

f ∼ N (m,Σ) (4.2)

that can be read as “the vector f is a sample of a multivariate Gaussian distri-
bution with mean m and covariance matrix Σ ”. In other words, the Gaussian
Process is a generalization of the multivariate Gaussian distribution defined over
function (not vectors).

Practically speaking when defining a prior Gaussian distribution, we must
define the mean vector and the covariance matrix, while for a prior Gaussian
Process we have to define the mean function 1 and the kernel function, which
will be used to then build the covariance matrix later on, when creating a mul-
tivariate Gaussian distribution out of a Gaussian Process to take into account
the discrete nature of the data.

Figure 4.1 shows the prior distribution of the function values f for different
input locations x. The shaded area shows the uncertainty of the function value
at a certain input position. The coloured outputs are the samples drawn from
the Gaussian Process. Although the shaded area of the two Figures may look
similar, the samples drawn from them are very different. The reason is that the
left prior distribution has a covariance matrix Σ 2 has non-zero extra diagonal
terms while the right one has only zero extra diagonal terms. When a multi-
variate Gaussian distribution has a diagonal covariance matrix, it means that
all the elements of the distributions are independent. Sampling one time from a
n-dimensional multivariate Gaussian will generate n independent samples, that
could have been sampled independently: we are sampling noise. On the other
hand, when the elements on the extra diagonal terms are nonzeros, it means

1In the absence of any prior knowledge, the mean function is usually set to zero.
2built using the kernel, it is going to be cleared later how

4.1. GAUSSIAN PROCESS REGRESSION 19

that the different values of the function are correlated, resulting in samples that
look smooth; see Sec. 4.3 to understand how to sample from a multi-variate
Gaussian distribution. Each of the colored functions is a sample drawn from
the Gaussian Process prior. If we now discretize each of the samples in n points,
i.e. f = [f1, f2, f3, . . . fn], the correlation between each of these points would be
given by the kernel functions, i.e. corr(f1, f2) = k(x1, x2). As you can see the
correlations between different points of the (sampled) functions are given by the
kernel function that uses as input the input locations where we are evaluating
the function values. Different examples of kernel functions are introduced in
Chapter 5. Chapter 6 will show how to choose the kernel function and how the
hyperparameters can be optimally determined. In the following section of this
chapter, we assume that we have chosen and optimized the kernel already and
use the Bayes theorem to the probability distribution of the posterior, i.e. of
the distribution of the function after having observed some data values.

(a) The covariance matrix has non-zero
extra diagonal terms.

(b) The covariance matrix has only zero
extra diagonal terms.

Figure 4.1: Gaussian Process Prior. The colored functions are samples drawn
from the distribution.

4.1.2 Gaussian Likelihood
In order to make predictions, we need to define a likelihood function that cap-
tures the probability of observing the data given the function values at specific
points. The likelihood function in exact GP is assumed to be Gaussian, i.e.

y = f(x) + ϵ ϵ ∼ N (0, σ2
n) (4.3)

p(y|f ,X) ∼ N (f(X), σ2
nI) (4.4)

Differently than of the GP prior, in this case, we are actually assuming
that the measurements y are going to be affected by noise, which is why the
likelihood function p(y|f ,X) is model as a Gaussian that has the mean equal
f and a covariance matrix that is the identity matrix times the likelihood noise,
σn.

20 CHAPTER 4. EXACT GAUSSIAN PROCESS

Figure 4.2: Noisy data given as labels to our model

4.1.3 Posterior

The posterior combines the prior and the likelihood, which captures the proba-
bility of observing the data given the function values at specific points, according
to:

posterior︷ ︸︸ ︷
p(f |y,X) =

likelihood︷ ︸︸ ︷
p(y|f ,X)

prior︷ ︸︸ ︷
p(f |X)

p(y|X)︸ ︷︷ ︸
marginal likelihood

= N (µf ,Σf) (4.5)

If the prior and the likelihood are Gaussian distributed, then the posterior
is also going to be Gaussian distributed. If the posterior distribution is in the
same probability distribution family as the prior probability distribution, the
prior and posterior are then called conjugate distributions, and the prior is called
a conjugate prior for the likelihood function 3.

The data induce a posterior GP which is specified by a posterior mean func-
tion and a posterior covariance function:

µf = K(X,X)(K(X,X) + σ2
nI)

−1y (4.6)

Σf = K(X,X)−K(X,X)(K(X,X) + σ2
nI)

−1K(X,X) (4.7)

3https://www.wikiwand.com/en/Conjugate_prior

https://www.wikiwand.com/en/Conjugate_prior

4.2. PREDICTION 21

To compute the distribution that describes our sampled data y we can solve
this integral:

p(y|X,y) =

∫
p(y|X,f)p(f |X,y)df = N (µy,Σy) (4.8)

µy = K(X,X)(K(X,X) + σ2
nI)

−1y (4.9)

Σy = K(X,X) + σ2
n −K(X,X)(K + σ2

nI)
−1K(X,X) (4.10)

Figure 4.3, shows the posterior distribution of the function f and of y. The
mean prediction is the same while the uncertainty of y is much larger since we
are also adding the likelihood noise to it. It is worth mentioning that f shows
the prediction of what is the most likely function before corrupting it with noise
during the measurements, while y shows the actual distribution of the data we
observed.

Figure 4.3: Posterior Distribution of f (left) and y (right).

4.2 Prediction
Given the calculation of the posterior distribution, the prediction of new output
values can be computed as:

p(f∗|y,X) =

∫
p(f∗|f)p(f |y,X) (4.11)

where we are marginalizing over the posterior distribution of the function, i.e.
p(f |y,X)df , given our the prior model, i.e. p(f∗|f).

Considering that p(f∗,f) is a Multivariate Gaussian Distribution by defi-
nition, then p(f∗|f) can be obtained by conditioning with respect to f . The

22 CHAPTER 4. EXACT GAUSSIAN PROCESS

distribution of f can be computed with the posterior distribution given the ev-
idence of the data. Given that all the terms of the integral are Gaussians, the
integral is also Gaussian. So, if p(f∗|y,X) is Gaussian then p(f∗,y|X) is a
multivariate Gaussian distribution defined as[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
. (4.12)

Hence, to make predictions, the mean and the variance of the posterior
distribution can be computed as the conditional mean and variance of the mul-
tivariate Gaussian distribution, according to:

µf∗ = K(X∗,X)(K(X,X) + σ2
nI)

−1y (4.13)

Σf∗ = K(X∗,X∗)−K(X∗,X)(K(X,X) + σ2
nI)

−1K(X,X∗) (4.14)

where X∗ are the prediction inputs and X and y are the training input and
outputs and the correlations K are computed using a kernel function.

The inversion of the covariance matrix scales with a computation cost of
O(n3), where n is the number of data points. However, some approximation
techniques can be used to reduce the computational cost, see Section 8.

Figure 4.4: Prediction of Gaussian Process posterior and posterior plus likeli-
hood noise

In this plot, we also show the prediction of the Gaussian Process for a range
of input that goes beyond the training set. It is possible to notice that the
average converges to the zero mean prior when far away from the data and
that the epistemic uncertainty (lack of knowledge) adds up to the aleatoric
uncertainty (due to the sensor noise).

4.3 Sampling from a Gaussian Process
To sample from a multivariate Gaussian Process the the Cholesky decomposition
of the covariance matrix Σ is calculated such that

4.4. FURTHER READING 23

LLT = Σ

where L is a lower triangular matrix. The sample ysample by multiplying z,
a vector of independent standard normal random variables z is a sample from a
Gaussian Distribution, with the Cholesky matrix L and adding the mean vector
µ, i.e.,

ysample = Lz + µ (4.15)

where
z ∼ N (0, I). (4.16)

Figure 4.5: Samples from the posterior distribution of f∗ and y∗

4.4 Further Reading
1. A Visual Exploration of Gaussian Processes

2. Chapter 2 of Gaussian Process for Machine Learning [8]

https://distill.pub/2019/visual-exploration-gaussian-processes/

24 CHAPTER 4. EXACT GAUSSIAN PROCESS

Chapter 5

Kernel Design

5.1 Kernel Definition

The kernel function specifies the covariance between the function values at two
points in the input space. The assumption is that function values that belong
to points that are closer to each other in the input space are more likely to be
similar. Hence, the kernel function can be interpreted as a measure of similarity
between two points in the input space. Given the constraint on the covariance
matrix to be semi-positive definite, the kernel function cannot be any function.

5.1.1 Squared Exponential Kernel

The most common kernel functions are the squared exponential (SE) kernel and
the Matern kernel. The SE kernel is infinitely differentiable and it is defined as:

kSE(xi, xj) = σ2
v exp

(
−1

2

(
(xi − xj)

2

ℓ2

))
(5.1)

where D is the dimensionality of the input space, xi and xj are data points
in the input space and σ2

v and ℓd are respectively the vertical (or output) length-
scale and the horizontal lengthscale. The vertical and the horizontal lengthscales
are the hyperparameters of the kernel function and they are optimized during
the training phase, see Chapter 6.

Generalization of the SE kernel is the Matern kernel The Matern
kernel is defined as

k(xi, xj) =
1

Γ(ν)2ν−1

√
2ν

l
(xi − xj)

2νKν

√
2ν

l
(xi − xj)

2) (5.2)

where Kν is a modified Bessel function and Γ is the gamma function. where
Kν is a modified Bessel function and Γ is the gamma function.

25

26 CHAPTER 5. KERNEL DESIGN

Figure 5.1: Square exponential kernel. The color intensity is proportional to the
vertical lengthscale and the width of the band is proportional to the horizontal
lenghtscale

The kernel has an additional parameter ν which controls the smoothness of
the resulting function. The smaller ν, the less smooth the approximated function
is. As ν goes to infinity, the kernel becomes equivalent to the square exponential
kernel. Important intermediate values are ν = 1.5 (once differentiable) and
ν = 2.5 (twice differentiable).

5.1.2 Periodic Kernel

The periodic kernel (derived by David Mackay) allows one to model functions
which repeat themselves exactly. The kernel definition is

kperiodic(xi, xj) = exp
(
−2 sin2(π(xi − xj)

2/p)

ℓ2

)
(5.3)

where the period p simply determines the distance between repetitions of the
function. The lengthscale ℓ determines the lengthscale function in the same way
as in the SE kernel.

5.1. KERNEL DEFINITION 27

(a) Caption for the first plot (b) Caption for the second plot

Figure 5.2: Fitting of a noisy sine using a periodic kernel. The kernel matrix
shows that inputs are correlated with them close to themselves and the ones
that are a distance of a certain periodicity. The prediction of the posterior now
does not converge to the prior when going far away from the data but keeps the
periodic prediction.

5.1.3 Linear Kernel
When the underlying relationship between the input variables and the output is
believed to be linear, the linear kernel can be quite effective. In such cases, the
linear kernel can capture the linear dependencies between input features. We
define the linear kernel as:

klin(xi, xj) = σ2
0 + xi · xj (5.4)

A linear kernel is usually used in combination with other kernels.

5.1.4 Kernel Composition
It is possible to sum and multiply kernels between them to create a more complex
prior distribution that would generalize better outside the region where data are
observed. For example, we could create a kernel that is the sum of linear and
periodic kernels, i.e.

ksum = klin + kperiodic (5.5)
Figure 5.3, shows the prediction of the gaussian process when using the afore-
mentioned kernel combination.

5.1.5 Deep Kernel Learning

k(xi, xj) = σ2
h exp

(
−1

2

(
(ψ(xi)− ψ(xj))

2

ℓ2

))
(5.6)

28 CHAPTER 5. KERNEL DESIGN

Figure 5.3: Fitting using a combination of linear and sinusoidal kernel

where ψ can be any nonlinear regressor and can be trained with any other
of the parameters of the kernel. It has been shown that using of a generic
non-linear function to project the input to a latent manifold keeps the kernel
to be well defined [2]. Very successful combination of multi-layer-perceptrons
and conventional neural networks with Gaussian Process where investigate in
the literature to scale the use of GP on high-dimensional inputs like images [9].

Chapter 6

Hyperparameters’
optimization

The kernel hyperparameter choice and the likelihood noise value will completely
change the fitting behavior of the GP. Differently from the least square estima-
tion of the parameters, which tries to minimize the residuals on the output
prediction, we rather try to find the parameters that would maximize the prob-
ability of sampling our data from the prior distribution. If we consider the
square exponential kernel and a Gaussian likelihood function, in the optimiza-
tion process we need to estimate the horizontal lengthscale, vertical lengthscale,
and the likelihood noise. To compute the probability of the data we use the
marginal likelihood that is the integral along all the possible output functions
sampled from our prior distribution.

6.1 Marginal Likelihood Maximization

The marginal likelihood is defined as

p(y|X) =

∫
p(y|f ,X)p(f |X)df (6.1)

is the marginalization of the likelihood of the data over the whole possible
function values. This is also known as the evidence of the data given in the
model. Intuitively, this means to find how likely was to sample my data from
the prior distribution. This measure of evidence is crucial for the optimization
of the hyperparameters of the kernel function because it allows finding that
set of hyperparameters that would better fit the data, for example, detecting
the right energy of the function (vertical length scale) or the right smoothness
(horizontal length scale). When dealing with Gaussian Prior and Gaussian
Likelihood, the marginal likelihood can be computed analytically and used to
optimize the hyperparameters of the kernel function. Given the exponential

29

30 CHAPTER 6. HYPERPARAMETERS’ OPTIMIZATION

nature of the Gaussian distribution, the (natural) logarithm of the marginal
likelihood can be obtained as the sum:

log(p(y|X)) = − 1

2
(y⊤K−1

y y)︸ ︷︷ ︸
data fit cost

− 1

2
log |Ky|︸ ︷︷ ︸

complexity term cost

−n
2
log(2π) (6.2)

where Ky = K(X,X)+σ2
nI and n is the number of data points. The best set of

hyperparameters for the kernel is obtained by the maximization of the marginal
log-likelihood (or minimizing the negative marginal log-likelihood). The use
of the logarithm allows us to write the product as a sum and to remove the
exponential in the gaussian distribution. The marginal likelihood will still tend
to favor the least complex model able to explain the data. Practically speaking
the optimization process always tries to make the horizontal length scale as big
as possible but without reaching the point that the model is too rigid and not
able to fit the data well.

Figure 6.1, shows the resulting fitting when we have too little horizontal
lenghtscale (on the left) or too big one (on the right). In the first case the
model, is very flexible, i.e. it would be able to fit a very non linear function, and
we can capture that from the samples drawn from the posterior distribution.
On the other hand, in the second case, the model is very rigid, ad all the data
are just considered as noise. The marginal likelihood maximisation gives us a
cost fuction to optimize and find the best kernel hyperparameters that would
describe well the property of our data. However, as any optimization process,
we may end up in local minima.

Figure 6.2, shows that when we have only 20 data points, and running the
parameter optimization for 20 times, half of the time the solution converges to a
good fitt and the other half to just considering the data as pure noise. The more
the data, the more stable the kernel parameters optimization will be. Figure 6.3
shows that with 40 points already the kernel parameters consistently converges
to a good fit of the noisy sine that generated them.

6.2. AUTOMATIC RELEVANCE DETERMINATION 31

Figure 6.1: Different fitting results with different kernel hyper-parameters. The
left plot has a very small horizontal lengthscale, i.e. the model function can be
very non-linear, and the right one has a very big length scale, the function can
be only very right, it can only fit (almost) linear methods, any oscillations of
the data will be considered as noise.

(a) Optimization converges to this solu-
tion 12 times over 20 initializations

(b) Optimization converges to this solu-
tion 8 times over 20 initializations

Figure 6.2: Optimization of kernel hyperparameters may get stuck to different
local minima. The left plot converges to realistic values of the kernel hyperpa-
rameters, while the right one converges to a too-rigid model, all the non-linearity
are considered as noise.

6.2 Automatic Relevance Determination

The input values of the kernel can also have more than one feature vectors, i.e.
positions in x,y,z of a robot, and different lengthscales, i.e. normalization values
can be used in each of the inputs features to scale the different distances in
each dimension. This technique is called Automatic Relevance Determination

32 CHAPTER 6. HYPERPARAMETERS’ OPTIMIZATION

Figure 6.3: With enough samples, the kernel parameters optimization always
converge to a good solution.

(ARD). The squared exponential kernel with ARD active looks like this,

k(xi, xj) = σ2
v exp

(
−1

2

D∑
d=1

(
(xi,d − xj,d)

2

ℓ2d

))
(6.3)

where D is the number of features of the inputs, xi and xj are data points
in the input space and σ2

v and ℓd are respectively the vertical lengthscale and
the horizontal lengthscale. When the kernel has a different lengthscale for each
of the input features, and we optimize the kernel using the marginal likelihood
maximization, the optimization process automatically determines the relevance
of features in a model, meaning it decides which features are important for pre-
dicting the output variable and which can be safely ignored. The optimization
process is always trying to find the least complex model (Occam’s Razor), hence
having one of the lengthscales as big as possible decreases the complexity term
without affecting the data fit term. This allows to automatically find which
features of the input are not relevant to make predictions. This is why, when a
kernel has different lengthscales in different features we say that the Automatic
Relevance Determination (ARD) feature is activated.

6.3 Questions

1. What are the learnable parameters of a Gaussian Proceess? Are they only
the hyperparameters of the kernel?

2. How do we optimize the hyperparameters? Why is it important?

6.4. FURTHER READING 33

Figure 6.4: Automatic Relevance Determination, Horizontal Lengthscale in x is
7.91, horizontal lengthscale in y is 1.91

6.4 Further Reading
1. Kernel Cookbook https://www.cs.toronto.edu/~duvenaud/cookbook/

2. Chapter 2.3, Gaussian Process for Machine Learning https://gaussianprocess.
org/gpml/chapters/RW.pdf

https://www.cs.toronto.edu/~duvenaud/cookbook/
https://gaussianprocess.org/gpml/chapters/RW.pdf
https://gaussianprocess.org/gpml/chapters/RW.pdf

34 CHAPTER 6. HYPERPARAMETERS’ OPTIMIZATION

Chapter 7

Active and Interactive
Learning with Gaussian
Process

7.1 Active Learning with Gaussian Process Re-
gression

Incremental learning is a machine learning paradigm where the model is up-
dated incrementally over time as new data becomes available. The incremental
learning process can be divided into two phases: the first phase is the training
phase, where the model is trained on a set of data, and the second phase is the
incremental phase, where the model is updated with new data. The incremental
phase can be further divided into two steps: the first step is the prediction step,
where the model is used to predict the output of the new data, and the second
step is the update step, where the model is corrected if new labels are provided.
The incremental learning process can be used to train a model on a large dataset
and then update the model with new data as it becomes available. Active learn-
ing is a special case of incremental learning in which a learning algorithm can
interactively query a human user (or some other information source), to label
new data points with the desired outputs.

Gaussian Process is the perfect candidate to perform active learning given
the estimation of the output uncertainty. Imagine wanting to fit a model but
labeling the least amount of points to keep the model light and the “supervisor"
less busy. The idea is to make predictions on many points of the workspace,
such as on a grid, and then only label in the location where the prediction is the
most uncertain. This is also the principle behind how Bayesian Optimization
works 1.

1https://www.wikiwand.com/en/Bayesian_optimization

35

https://www.wikiwand.com/en/Bayesian_optimization

36CHAPTER 7. ACTIVE AND INTERACTIVE LEARNING WITH GAUSSIAN PROCESS

Figure 7.1, depicts the process of active learning of a noisy sine. You can
see good fitting already after only as little as twenty samples. In this example,
the learner is, after every iteration also estimating the hyperparameters of the
kernel, this makes the prediction of the likelihood noise, horizontal and verti-
cal lenghtscale change at every data collection. This is why the uncertainty
prediction looks very different in the first steps when we have too little data.
This is because there are many local minima in the hyperparameter space. After
enough samples, the optimization will always converge to the same (true) values
of the kernel hyperparameters.

7.1.1 Incremental aggregation of datapoints (post-MLL
maximization)

If we consider having enough data to infer the hyperparameters of the kernel
already, then, when aggregating more data to the model, only the update of the
covariance matrix is performed, while the hyperparameters are kept fixed. To
avoid recomputing the inverse of the covariance matrix, a least square update
can be performed [7], where given the update covariance matrix,

Kn+1 =

[
Kn(X,X) K(X,Xnew)
K(Xnew,X) K(Xnew,Xnew)

]
(7.1)

the updated inverse covariance matrix becomes:

K−1
n+1 =

[
Kn(X,X)−1 + gee⊤ −ge

−ge g

]
(7.2)

where e = Kn(X,X)−1K(X,Xnew) and g = (K(Xnew,Xnew)−K(Xnew,X)e)−1.
In a robotics scenario, where we may explore the workspace to regress a certain
function, this (smart) update of the (inverse of the) covariance matrix, allows
us to aggregate data to make a confident prediction the next time that point is
visited. Of course, we can also decide to not aggregate if the uncertainty on the
prediction was little enough.

7.2 Smart aggregation rule and interactive learn-
ing

7.2. SMART AGGREGATION RULE AND INTERACTIVE LEARNING 37

(a) One sample

(b) Six samples

(c) Nine samples

(d) Twelve Samples

(e) Eighteen samples

(f) Twenty four samples

Figure 7.1: Active Learning using Gaussian Process. The kernel is an RBF
kernel.

38CHAPTER 7. ACTIVE AND INTERACTIVE LEARNING WITH GAUSSIAN PROCESS

Chapter 8

Approximated Gaussian
Process

When dealing with many data points, the computational cost of the inversion
of the covariance matrix becomes prohibitive. We now seek to find a way to
approximate the prior or the posterior that would make the optimization and
the prediction with a Gaussian Process faster but without losing accuracy.

8.1 Sparse Gaussian Process
We start with the idea of having some extra (latent) variables u at a certain
input location Z that we call inducing variables, p(f ,f∗,u) is still gaussian
distributed. This extra variable could always be marginalized out given the
(consistency) property of Gaussian Process, i.e.

p(f∗, f) =

∫
p(f∗, f |u)p(u)du =

∫
p(f∗|f,u)p(f |u)p(u)du (8.1)

Now, we introduce the fundamental approximation which gives rise to almost
all sparse approximations. We approximate the joint prior by assuming that f∗
and f are conditionally independent given u, i.e.,

p(f∗,f) ≃ q(f∗,f) =

∫
p(f∗|u)q(f |u)p(u)du. (8.2)

The name inducing variable is motivated by the fact that f and f∗ can only
communicate through u, and then u therefore induces the dependencies be-
tween training and test cases. By using this assumption, the joint probability
distribution becomes [4],

p(f ,f∗) ≃ q(f ,f∗) = N
(
0,

[
Q(X,X) Q(X,X∗)
Q(X∗,X) K(X∗,X∗)

])
, (8.3)

39

40 CHAPTER 8. APPROXIMATED GAUSSIAN PROCESS

where K is the prior kernel matrix and Q is the Nyström approximation of the
kernel matrix defined as

Q(x,x′) = K(x,Z)K(Z,Z)−1K(Z,x′) (8.4)

where Z is a vector of dimension m with m << n, with n being the number of
training points. The number and the location of the inducing inputs determine
the flexibility of the approximated GP.

How do we find the approximated kernel matrix? If u is a sufficient
statistic for the data y then we know that when making a prediction for the
variance of y given u we obtain

Σ = K(X,X)−K(X,Z)K(Z,Z)−1K(Z,X) := 0 (8.5)

hence the only way to obtain that is to change the prior kernel matrix, i.e.,

K(X,X) := Q := K(X,Z)K(Z,Z)−1K(Z,X) (8.6)

this explains the definition 8.4.

8.1.1 Making prediction with the sparse model
The mean and the covariance of the posterior distribution after modifying the
prior using sparse matrices now becomes:

µf∗ = Q(X∗,X)(Q(X,X) + σ2
nI)

−1y (8.7)

Σf∗ = K(X∗,X∗)−Q(X∗,X)(Q(X,X) + σ2
nI)

−1Q(X,X∗) (8.8)
There is a problem with the inversion of this matrix, i.e. it looks like still

have to invert a (n × n) matrix, where n is the number of training points.
However, given the sparse nature of the approximated covariance matrix and
using the Woodbury matrix identity 1 , we can write the prediction in a new
data point as:

µ = σ−2
n K(X∗, Z)ΓK(Z,X)y (8.9)

Σ = K(X∗,X∗)−Q(X∗,X∗) +K(X∗,Z)ΓK(Z,X∗) (8.10)
where

Γ = (σ−2
n K(Z,X)K(X,Z) +K(Z,Z))−1. (8.11)

Please notice that after using the Woodbury matrix identity, the final prediction
does not have to invert a big matrix of dimension n × n but only a matrix of
dimension m×m. These can generate a big sped-up in the computation of the
inverse of the (approximate) covariance matrix. In particular during training,
where this inversion has to be computed for any step of the optimization process.
However, we still have not discussed how to select the inducing points and in
particular, how to optimize their location to maximize the likelihood of the
observed data.

1https://www.wikiwand.com/en/Woodbury_matrix_identity

https://www.wikiwand.com/en/Woodbury_matrix_identity

8.1. SPARSE GAUSSIAN PROCESS 41

8.1.2 Training the kernel parameters and inducing points
location

The inducing points’ location can be initialized from a subset of the training
samples. For example, if we have thousands of samples, we can select (randomly)
one hundred of them and internalize the inducing inputs with that value. How-
ever, the initial location may not be ideal, hence we may want to optimize their
location by treating them as parameters of the kernel. One could maximize the
marginal likelihood (also called the evidence) with respect to Z. Remembering
that

q(y) =

∫
p(y|f)q(f)df (8.12)

where q(f) =
∫
q(f |u)p(u)du, then,

log(q(y|X)) = −1

2
y⊤(Q(X,X)+σ2

nI)
−1y− 1

2
log |Q(X,X)+σ2

nI|−
n

2
log(2π)

(8.13)
where we must remember that Q(X,X) is induced from Z. By maximizing
the likelihood, we find the best parameters for the prior distribution, including
the inducing inputs’ locations, that maximize the likelihood that our data are
sampled from. Although this is nice and simple, it is shown in practive that it
may lead to overfitting.

Fortunately, as shown in [6], by maximizing also another term, i.e.,

− tr(K(X,X)−Q(X,X))

2σ2
n

(8.14)

the fitting performance may increase. If the trace is zero, it implies that the
inducing variables become sufficient statistics and we can reproduce exactly the
full GP prediction. The quantity is a lower bound of the true log marginal
likelihood for any value of the inducing inputs, i.e.,

log(p(y|X)) ≥ log(q(y|X))− tr(K(X,X)−Q(X,X))

2σ2
n

(8.15)

The idea behind finding a true lower bound of the marginal likelihood is that by
maximizing the lower bound we are indirectly maximizing both of them. The
point is that many times the true marginal likelihood is impossible to calculate.
The goal of many statisticians is to find the most computationally, yet close (or
tight) lower bound. Additionally, the trace, in the lower bound, corresponds to
the squared error of predicting the training latent values f from the inducing
variables u. When the trace term is zero, the Nyström approximation is ex-
act, which means that the approximated distribution matches exactly the true
posterior distribution. Figure 8.1 shows the prediction of the sparse Gaussian
Process where only 5 inducing inputs are selected and displayed as red arrows.

Although this is nice and simple, during the lower bound maximization we
are still pre and post-multiplying the matrix Q(X,X)−1 by the whole dataset
label y. The lower bound calculation scales with a complexity cost of O(nm2)

42 CHAPTER 8. APPROXIMATED GAUSSIAN PROCESS

Figure 8.1: Fitting a noisy sine with a Sparse Gaussian Process

so, when having many, i.e. millions, of datapoint, this would not scale. We
want to find a method that does not require to use of the whole batch of data
for every iteration of the optimization but it can work also with mini-batches
of the dataset, like when training a neural network.

8.2 Stochastic Variational Gaussian Process

A more computationally scalable bound can be achieved by keeping the addi-
tional variational distribution as

q(u) = N (u|m,S) (8.16)

where every inducing output of u correspond to an inducing input Z and m
and S are respectively the mean and the covariance matrix.

We can define the approximate posterior as

q(f) :=

∫
p(f |u)q(u)du (8.17)

to approximate the posterior distribution.
Rember that before for the sparse gaussian process we had a different defi-

nition:

q(f) :=

∫
q(f |u)p(u)du (8.18)

8.2. STOCHASTIC VARIATIONAL GAUSSIAN PROCESS 43

8.2.1 Variational Distribution fitting

In the paper [3], a novel lower bound to the true marginal log-likelihood is
proposed, to fit the variational distribution by maximizing the likelihood of
fitting the data given as label, i.e.,

log(p(y|X)) ≥
n∑

i=1

{
logN (yi|K(xi,Z)K(Z,Z)−1m, σ2

n)+

− 1

2
σ−2
n

(
K(xi, xi)−K(xi,Z)K(Z,Z)−1K(Z, xi)

)
+

− 1

2
tr
(
σ2
nSK(Z,Z)−1K(Z, xi)K(xi,Z)K(Z,Z)−1

)}
+

− KL(q(u)||p(u))
(8.19)

The key property of this new lower bound of the true marginal log-likelihood is
that it can be written as a sum of terms, this implies that when we are searching
for the optimal inducing inputs (Z) and variational parameter (m and S), we
can just sum over a (small) batch of our dataset, so the computational is only
proportional to the how big is the batch size we are using for the update of the
parameters. However, it is worth noticing that we still need to compute the
inverse of the covariance evaluated on the inducing points, this has a computa-
tional cost of O(m3). So it only scales with the amount of inducing points, not
the data.

To compute the Kullback-Leibler (KL) divergence between a multivariate
Gaussian distribution N (m,S) and a Gaussian distribution N (0,K), first com-
pute the inverse and determinant of the covariance matrices S and K, denoted as
S−1, K−1, |S|, and |K| respectively. Then, the KL divergence can be calculated
as follows:

KL(q(u)||p(u)) = 1

2

(
tr(K(Z,Z)−1S) + (mTK(Z,Z)−1m)− log

(
|K(Z,Z)|

|S|

))
,

(8.20)

The fact that we are still able to maximize the (lower bound of the) marginal
log-likelihood of the data without having to use the whole set of labels at every
iteration opens the door to fit GPs on (very) big datasets without losing the
probabilistic interpretation of the inference of the function and the inference of
the prediction.

44 CHAPTER 8. APPROXIMATED GAUSSIAN PROCESS

8.2.2 Predicting with Stochastic Variational Gaussian Pro-
cess

To make predictions on a test point and using the definition of the approximate
posterior (8.17) and the prediction integral for a standard GP, see Eq. (4.11)2,
the predictive distribution can be computed as:

p(f∗|y) =
∫
p(f∗|f ,u)p(f ,u|y)dfdu

≈
∫
p(f∗|f ,u)p(f |u)q(u)dfdu

=

∫
p(f∗|u)q(u)du

(8.21)

The integral is tractable, and we can compute the mean and variance of a
test point in O(m2).

The result of this integral is

p(f∗|y) = N (Am,K(X∗,X∗) +A(S −K(Z,Z))A⊤) (8.22)

where A = K(X∗,Z)K(Z,Z)−1.
As you can notice, also in the prediction, we do not have the inputs or the

output label anywhere. The prediction time will not be affected directly by
the dimension of the training set, but only by the mean and variance of the
approximated distribution q(u).

8.3 Sparse GP is a spacial case of a SVGP
Given the kernel approximation Q, we can compute the distribution of the
inducing points, N (u|m,S), in closed form, given the data y, i.e.,

q(u) = N (K(Z,X)[Q+ Iσ2
n]

−1y,K(Z,Z)−K(Z,X)[Q+ Iσ2
n]

−1K(X,Z)).
(8.23)

to make a prediction we now have to solve the integral

q(f∗) :=

∫
p(f∗|u)q(u)du. (8.24)

By using the solution for Gaussians of Eq. 8.22 we obtain Eq. 8.7 and 8.8. The
integral to compute the posterior as a function of the approximate distribution
q(u) is the only thing we need. That approximate distribution is computed
using the usual condition rule given the observation of the data, while the co-
variance matrix of the data is approximated with Q (plus the likelihood noise).
Remember that we found the approximation of the prior covariance matrix Q

2Also remember that p(f, u|y) = p(f |u, y)p(u|y) ≈ p(f |u)q(u), considering that f is in-
dependent from y (but only depends on u) and p(u|y) is approximated with our variational
distribution q(u).

8.4. FURTHER READING 45

Figure 8.2: Fitting of noisy sine using Stochastic Variational Gaussian Process.

by imposing that if we would have had to predict y from u we should have no
residual uncertainty. Then, we use that approximation prior to conditioning on
the data and find the distribution of the inducing point p(u).

We can conclude, that the Sparse GP is a special case of SVGP, where the
variational distribution is computed in closed form from the data. This can
be used as a test to validate if the training of m and S of the variational
distribution, converges to the excepted mean and variance values given the
evidence of our data. The advantage of using an SVGP is that while training,
in order to find the inducing points and the hyperparameters of the kernel, we
do not need to rely on the complete batch of the data, but we can do mini
batching. This can speed up the inducing locations and hyperparameters when
we are dealing with a hundred thousand datapoints. In the paper [3], it is also
underlined how, when using the optimal mean and variance estimated using all
the data, the variational lower bound of the SVGP becomes the same as the
sparse GP.

8.4 Further Reading
1. Approximation Methods for Gaussian Process Regression, Chapter 3 [4]

2. Variational model selection for sparse Gaussian process regression [6]

3. Gaussian Process for Big Data [3]

46 CHAPTER 8. APPROXIMATED GAUSSIAN PROCESS

Chapter 9

Multi-Output Gaussian
Process Regression

In the previous chapters, we talked about modeling a single function variable f
that can also be dependent on input with more than one feature, like when we
talked about Automatic Relevance Determination.

However, we never considered the case of multi-input-multi-output model-
ing using Gaussian Process Regression. This is indeed possible and it is very
useful when we are dealing with multiple outputs like when we are modeling the
dynamics of a robot that has more degree of freedom. Let’s recall how we make
predictions for out posterior distribution

µf∗ = K(X∗,X)(K(X,X) + σ2
nI)

−1y (9.1)

Σf∗ = K(X∗,X∗)−K(X∗,X)(K + σ2
nI)

−1K(X,X∗) (9.2)

and let’s consider the square exponential kernel as our kernel, i.e.,

kSE(xi, xj) = σ2
p exp

(
−1

2

(
(xi − xj)

2

ℓ2

))
. (9.3)

When dealing with multiple outputs, each of them can be modeled as an inde-
pendent Gaussian Process with different kernel functions and hyperparameters.
This simply means that for each output we fit a single output Gaussian Process
model. This is the most generic solution but it is very computationally and
memory inefficient.

However, if we consider that the kernel function can also be shared between
the different outputs. This is useful when the different outputs can be considered
sampled from the same generative process, e.g. the velocity of a robot in different
cartesian directions.

Sharing horizontal lenghtscales When modeling multiple outputs, like ve-
locities, it makes sense to share the horizontal length scales of the kernel, given
that the smoothness of the motion can be independent of the cartesian direction.

47

48 CHAPTER 9. MULTI-OUTPUT GAUSSIAN PROCESS REGRESSION

Sharing output lengthscales However, when sharing the parameters of the
kernel among different models, we must be careful. Let’s imagine we are model-
ing the acceleration and the velocity output as a function of the robot’s position.
We are modeling, then, 2 outputs as a function of one input. We could share
all the kernel parameters among the outputs and pretend to be happy with
the result. This is fundamentally wrong. Suppose now you make a prediction,
with mean and output both for velocity and acceleration, hence, the confidence
bounds are [µ− 2σ, µ+ 2σ]. The problem with this is that the unit of measure
of the output standard deviation, i.e.σ, is set by the output length scale of the
kernel. This means that if we are modeling output variables that have different
units of measure, for sure we cannot share the output lengthscale. This is be-
cause we would not be able to set uniquely the unit of measure of the output
lenghtscale. Moreover, if we share the output lengthscales among outputs that
have a different level of energy, e.g. the first output data only varying between
[−1, 1] and the other between [−10, 10] we will end up with a miscalibrated
prior uncertainty. This implies that when we go “far away" from the data, the
prediction uncertainty can be over-estimated or under-estimated, for one output
or another.

Sharing likelihood noise Additionally, if we have different noise levels of
the output signals, for example, because one of the sensors is much more noisy
than the other, we can also not share the likelihood of noise among the outputs.
Again, sharing the noise will make the uncertainty to be miss-calibrated.

Figure 9.1 summarizes what we just said. In the figure, we are trying to fit
two outputs, (a) a cosine that is very noisy and (b) a sine that is less noisy but
oscillates between larger values. After fitting and maximizing the marginal log-
likelihood of both outputs simultaneously, we notice that the fitting converges to
a likelihood noise that underestimates the noise of function (a) and overestimates
the likelihood noise of function (b). With deeper concern, we also notice that the
maximum uncertainty, at which the model converges outside the region of the
data, is well-calibrated for function (b) but overestimates the prior uncertainty
of function (a). Although this may seem not important, having well-calibrated
(epistemic) uncertainty when going into an unexplored region of the workspace
can make the difference between a usable and unusable uncertainty prediction.

Sharing the inducing inputs When fitting sparse models, if we have many
outputs, having different inducing points for each of the outputs can be in-
tractable. A good option is to share the inducing points among the different
outputs. This can speed up the fitting of your models and does not have many
disadvantages.

Figure ??, depicts the vector field learned from the red demonstrations. In
this example, we are fitting

∆x = p(f |x) (9.4)

where the probability distribution is a Multi-output sparse Gaussian Process
where the inducing points and the input lengthscales are shared among the

49

(a) Noisy Sine that oscillates between -1 and 1

(b) Cosine that oscillates between -5 and 5

Figure 9.1: Sharing likelihood noise and vertical lengthscale may induce to
miscalibrated uncertainties

different outputs while the output lengthscales and noise is not shared. In the
plot, you can see that when going far away from the data, the uncertainty of
the model is growing, telling us that the prediction of the model is going to be
less confident.

50 CHAPTER 9. MULTI-OUTPUT GAUSSIAN PROCESS REGRESSION

Chapter 10

Exercises

10.1 Definition

Write down the definition of a univariate and multivariate Gaussian Probability
Distribution and explain each of the terms. Why is this distribution so successful
in statistics?

What is the difference between the conditioning and the marginalization of
a multi-dimensional Gaussian? Write down any necessary equation and help
yourself with drawings.

10.2 Bayes Theorem

10.2.1 Definition

Find the correct answer and motivate it

1.
likelihood ∝ posterior

prior
(10.1)

2.
posterior ∝ prior

likelihood
(10.2)

3.
posterior =

likelihood ∗ prior
marginallikelihood

(10.3)

10.2.2 Complete the equation

p(f∗|f)p(f) = (10.4)

p(f∗|f)p(f |y) = (10.5)

51

52 CHAPTER 10. EXERCISES∫
(p(f∗|f)p(f |y))df = (10.6)

p(f∗, f |y) = p(y|f)·
= (10.7)

p(f∗|y) =
∫
()df = (10.8)

10.3 Gaussian Process

10.3.1 What is a Gaussian Process?
Choose the right answer or answers.

1. It is a function approximator that uses a set of basis functions, which are
centered on specific points in the input space, to transform the input data
into a higher-dimensional space where the mapping between the inputs
and outputs can be learned more easily. The output of the approximator
is then a weighted sum of the outputs of the basis functions, where the
weights are learned during training

2. It is a statistical model used to represent a probability distribution of a
dataset that is assumed to be generated from several Gaussian distribu-
tions.

3. It is a type of network that incorporates Bayesian inference into the model.
The weights and biases are treated as random variables with probability
distributions that are updated as new data is observed. This allows for
uncertainty to be quantified and incorporated into the model, which can
be particularly useful in settings where the amount of data is limited or
the data is noisy.

4. It is a collection of random variables, any finite number of which have a
joint Gaussian distribution. It is a generalization of a Gaussian distribu-
tion to functions.

5. It is a variant of linear regression that utilizes a kernel function to trans-
form the original input features into a higher-dimensional space, allowing
for nonlinear relationships to be captured by a linear model.

10.3.2 Kernel Definition
Given the Square Exponential Kernel:

k(xi, xj) = σ2
f exp(−

(xi − xj)
2

σ2
l

) (10.9)

Prove that it is a well-defined kernel. Example of well-defined kernels:

k(xi, xj) = x⊤i xj ; (10.10)

10.3. GAUSSIAN PROCESS 53

k(xi, xj) = ck̃(xi, xj); (10.11)

where c is a constant.

k(xi, xj) = f(xi)k̃(xi, xj)f(xj); (10.12)

where f is a generic function

k(xi, xj) = exp(k̃(xi, xj)); (10.13)

10.3.3 Marginal Likelihood
Maximum likelihood estimation (MLE) is a method that seeks to find the pa-
rameters of a statistical model that maximizes the likelihood of observing the
data that we have. Essentially, MLE involves finding the set of parameter values
that make the observed data most probable. Discuss the truth of any of the
following statements

1. Maximum likelihood cannot be used in Gaussian Process Regression be-
cause there are no parameters

2. Maximum likelihood is a convex optimization problem

3. Maximum likelihood is a non differentiable function

4. Maximum likelihood cannot be used in practice because we only know
how to minimize functions

10.3.4 Conditional Posterior
Write down the equation that we use for making predictions (mean and variance)
with a Gaussian Process Regression (conditional posterior) at one point.

1. Explain the dimensional of each of the vectors and their meaning.

2. How any of the elements of the vector are calculated

3. Predict the mean and the variance of

lim
x→∞

µ(x), σ(x) (10.14)

10.3.5 Sparse Approximation of Gaussian Process
Define and discuss if any of the statements are true or false

1. Sparse Approximation of Gaussian Process is a technique used to speed
up the computation of Gaussian Process regression for large datasets.

2. In a Sparse Approximation of Gaussian Process, the user needs to select
a subset of the original training data.

3. Sparse Approximations are useful for making faster predictions but not
training.

54 CHAPTER 10. EXERCISES

10.3.6 Exam question
You work for Dyson and you are programming software for autonomous robots.
Specifically, you are programming vacuum cleaners that enable end-users to
create custom cleaning policies based on human demonstrations. The robot’s
position in a room is determined using a Wi-Fi antenna, and you are tasked
with developing a steering strategy for the robot. You have decided to use a
Gaussian Process with the SE-ARD kernel, with the robot’s position as input
and the steering angle as output.

a) When you selected the SE-ARD kernel, you noticed an unusual result in
the optimization of the lengthscales for the x, y, and z inputs. Explain why this
happened, and write down the equation of the kernel. Additionally, describe
the log marginalization likelihood and the significance of each term.

b) After training the robot, it was mistakenly placed in an unexplored region
of the room. What do you expect the Gaussian Process to predict, and why?

c) How can you prompt the robot to ask for more data, and what is the
name of the field of research that deals with this issue?

d) If the human demonstrator provides new data in the workspace, which
matrix dimensions will change? Do you need to invert the entire covariance
matrix? What is the name of the field of research that addresses this issue?

e) After recording data for an hour, your database has become too large, and
your Gaussian Process is too slow to train. What type of approximation would
you use, and what are the hyperparameters of this method? Finally, describe
how to select these hyperparameters.

Bibliography

[1] Chris Bracegirdle. “Bayes’ Theorem for Gaussians”. In: http://web4.cs.ucl.ac.uk/staff/C.Bracegirdle/home.php
(2010).

[2] Roberto Calandra et al. “Manifold Gaussian processes for regression”. In:
2016 International joint conference on neural networks (IJCNN). IEEE.
2016, pp. 3338–3345.

[3] James Hensman, Nicolo Fusi, and Neil D Lawrence. “Gaussian processes
for big data”. In: arXiv preprint arXiv:1309.6835 (2013).

[4] Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher KI
Williams. “Approximation methods for Gaussian process regression”. In:
(2007).

[5] Freek Stulp and Olivier Sigaud. “Many regression algorithms, one unified
model: A review”. In: Neural Networks 69 (2015), pp. 60–79.

[6] Michalis Titsias. “Variational learning of inducing variables in sparse Gaus-
sian processes”. In: Artificial intelligence and statistics. PMLR. 2009, pp. 567–
574.

[7] Steven Van Vaerenbergh et al. “Fixed-budget kernel recursive least-squares”.
In: 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE. 2010, pp. 1882–1885.

[8] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes
for machine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.

[9] Andrew G Wilson et al. “Stochastic variational deep kernel learning”. In:
Advances in neural information processing systems 29 (2016).

55

	Introduction
	Linear Regression
	Ordinary Linear Regression
	Kernelized Linear Regression
	Bayesian Linear Regression

	Properties of Gaussian Distributions
	Definition Gaussian
	Gaussian Conditioning
	Gaussian Marginalization
	Bayes Theorem with Gaussians
	Further Reading

	Exact Gaussian Process
	Gaussian Process Regression
	Prior
	Gaussian Likelihood
	Posterior

	Prediction
	Sampling from a Gaussian Process
	Further Reading

	Kernel Design
	Kernel Definition
	Squared Exponential Kernel
	Periodic Kernel
	Linear Kernel
	Kernel Composition
	Deep Kernel Learning

	Hyperparameters' optimization
	Marginal Likelihood Maximization
	Automatic Relevance Determination
	Questions
	Further Reading

	Active and Interactive Learning with Gaussian Process
	Active Learning with Gaussian Process Regression
	Incremental aggregation of datapoints (post-MLL maximization)

	Smart aggregation rule and interactive learning

	Approximated Gaussian Process
	Sparse Gaussian Process
	Making prediction with the sparse model
	Training the kernel parameters and inducing points location

	Stochastic Variational Gaussian Process
	Variational Distribution fitting
	Predicting with Stochastic Variational Gaussian Process

	Sparse GP is a spacial case of a SVGP
	Further Reading

	Multi-Output Gaussian Process Regression
	Exercises
	Definition
	Bayes Theorem
	Definition
	Complete the equation

	Gaussian Process
	What is a Gaussian Process?
	Kernel Definition
	Marginal Likelihood
	Conditional Posterior
	Sparse Approximation of Gaussian Process
	Exam question

